Combinations Calculator (nCr) (2024)

Calculator Use

The Combinations Calculator will find the number of possible combinations that can be obtained by taking a sample of items from a larger set. Basically, it shows how many different possible subsets can be made from the larger set. For this calculator, the order of the items chosen in the subset does not matter.

Factorial
There are n! ways of arranging n distinct objects into an ordered sequence, permutations where n = r.
Combination
The number of ways to choose a sample of r elements from a set of n distinct objects where order does not matter and replacements are not allowed.
Permutation
The number of ways to choose a sample of r elements from a set of n distinct objects where order does matter and replacements are not allowed. When n = r this reduces to n!, a simple factorial of n.
Combination Replacement
The number of ways to choose a sample of r elements from a set of n distinct objects where order does not matter and replacements are allowed.
Permutation Replacement
The number of ways to choose a sample of r elements from a set of n distinct objects where order does matter and replacements are allowed.
n
the set or population
r
subset of n or sample set

Combinations Formula:

\( C(n,r) = \dfrac{n!}{( r! (n - r)! )} \)

For n ≥ r ≥ 0.

The formula show us the number of ways a sample of “r” elements can be obtained from a larger set of “n” distinguishable objects where order does not matter and repetitions are not allowed. [1] "The number of ways of picking r unordered outcomes from n possibilities." [2]

Also referred to as r-combination or "n choose r" or the binomial coefficient. In some resources the notation uses k instead of r so you may see these referred to as k-combination or "n choose k."

Combination Problem 1

Choose 2 Prizes from a Set of 6 Prizes

You have won first place in a contest and are allowed to choose 2 prizes from a table that has 6 prizes numbered 1 through 6. How many different combinations of 2 prizes could you possibly choose?

In this example, we are taking a subset of 2 prizes (r) from a larger set of 6 prizes (n). Looking at the formula, we must calculate “6 choose 2.”

C (6,2)= 6!/(2! * (6-2)!) = 6!/(2! * 4!) = 15 Possible Prize Combinations

The 15 potential combinations are {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}

Combination Problem 2

Choose 3 Students from a Class of 25

A teacher is going to choose 3 students from her class to compete in the spelling bee. She wants to figure out how many unique teams of 3 can be created from her class of 25.

In this example, we are taking a subset of 3 students (r) from a larger set of 25 students (n). Looking at the formula, we must calculate “25 choose 3.”

C (25,3)= 25!/(3! * (25-3)!)= 2,300 Possible Teams

Combination Problem 3

Choose 4 Menu Items from a Menu of 18 Items

A restaurant asks some of its frequent customers to choose their favorite 4 items on the menu. If the menu has 18 items to choose from, how many different answers could the customers give?

Here we take a 4 item subset (r) from the larger 18 item menu (n). Therefore, we must simply find “18 choose 4.”

C (18,4)= 18!/(4! * (18-4)!)= 3,060 Possible Answers

Handshake Problem

In a group of n people, how many different handshakes are possible?

First, let's find the total handshakes that are possible. That is to say, if each person shook hands once with every other person in the group, what is the total number of handshakes that occur?

A way of considering this is that each person in the group will make a total of n-1 handshakes.Since there are n people, there would be n times (n-1) total handshakes. In other words, the total number of people multiplied by the number of handshakes that each can make will be the total handshakes. A group of 3 would make a total of 3(3-1) = 3 * 2 = 6. Each person registers 2 handshakes with the other 2 people in the group; 3 * 2.

Total Handshakes = n(n-1)

However, this includes each handshake twice (1 with 2, 2 with 1, 1 with 3, 3 with 1, 2 with 3 and 3 with 2) and since the orginal question wants to know how many different handshakes are possible we must divide by 2 to get the correct answer.

Total Different Handshakes = n(n-1)/2

Handshake Problem as a Combinations Problem

We can also solve this Handshake Problem as a combinations problem as C(n,2).

n (objects) = number of people in the group
r (sample) = 2, the number of people involved in each different handshake

The order of the items chosen in the subset does not matter so for a group of 3 it will count 1 with 2, 1 with 3, and 2 with 3 but ignore 2 with 1, 3 with 1, and 3 with 2 because these last 3 are duplicates of the first 3 respectively.

\( C(n,r) = \dfrac{n!}{( r! (n - r)! )} \)

\( C(n,2) = \dfrac{n!}{( 2! (n - 2)! )} \)

expanding the factorials,

\( = \dfrac{1\times2\times3...\times(n-2)\times(n-1)\times(n)}{( 2\times1\times(1\times2\times3...\times(n-2)) )} \)

cancelling and simplifying,

\( = \dfrac{(n-1)\times(n)}{2} = \dfrac{n(n-1)}{2} \)

which is the same as the equation above.

Sandwich Combinations Problem

This is a classic math problem and asks something like How many sandwich combinations are possible? and this is how it generally goes.

Calculate the possible sandwich combinations if you can choose one item from each of the four categories:

  • 1 bread from 8 options
  • 1 meat from 5 options
  • 1 cheese from 5 options
  • 1 topping from 3 options

Often you will see the answer, without any reference to the combinations equation C(n,r), as the multiplication of the number possible options in each of the categories. In this case we calculate:

8 × 5 × 5 × 3 = 600
possible sandwich combinations

In terms of the combinations equation below, the number of possible options for each category is equal to the number of possible combinations for each category since we are only making 1 selection; for example C(8,1) = 8, C(5,1) = 5 and C(3,1) = 3 using the following equation:

C(n,r) = n! / ( r!(n - r)! )

We can use this combinations equation to calculate a more complex sandwich problem.

Sandwich Combinations Problem with Multiple Choices

Calculate the possible combinations if you can choose several items from each of the four categories:

  • 1 bread from 8 options
  • 3 meats from 5 options
  • 2 cheeses from 5 options
  • 0 to 3 toppings from 3 options

Applying the combinations equation, where order does not matter and replacements are not allowed, we calculate the number of possible combinations in each of the categories. You can use the calculator above to prove that each of these is true.

  • 1 bread from 8 options is C(8,1) = 8
  • 3 meats from 5 options C(5,3) = 10
  • 2 cheeses from 5 options C(5,2) = 10
  • 0 to 3 toppings from 3 options; we must calculate each possible number of choices from 0 to 3 and get C(3,0) + C(3,1) + C(3,2) + C(3,3) = 8

Multiplying the possible combinations for each category we calculate:

8 × 10 × 10 × 8 = 6,400
possible sandwich combinations

How many possible combinations are there if your customers are allowed to choose options like the following that still stay within the limits of the total number of portions allowed:

  • 2 portions of one meat and 1 portion of another?
  • 3 portions of one meat only?
  • 2 portions of one cheese only?

In the previous calculation, replacements were not allowed; customers had to choose 3 different meats and 2 different cheeses. Now replacements are allowed, customers can choose any item more than once when they select their portions. For meats and cheeses this is now a combinations replacement or multichoose problem using the combinations with replacements equation:

CR(n,r) = C(n+r-1, r) = (n+r-1)! / (r! (n - 1)!)

For meats, where the number of objects n = 5 and the number of choices r = 3, we can calculate either combinations replacement CR(5,3) = 35 or substitute terms and calculate combinations C(n+r-1, r) = C(5+3-1, 3) = C(7, 3) = 35.

Calculating cheese choices in the same way, we now have the total number of possible options for each category at

  • bread is 8
  • meat is 35
  • cheese is 15
  • toppings is 8

and finally we multiply to find the total

8 × 35 × 15 × 8 = 33,600
possible sandwich combinations!

How many combinations are possible if customers are also allowed replacements when choosing toppings?


References

[1] Zwillinger, Daniel (Editor-in-Chief). CRC Standard Mathematical Tables and Formulae, 31st Edition New York, NY: CRC Press, p.206, 2003.

For more information on combinations and binomial coefficients please see Wolfram MathWorld: Combination.

Combinations Calculator (nCr) (2024)

FAQs

What is the formula for combinations in nCr? ›

To calculate combinations, we will use the formula nCr = n! / r! * (n - r)!, where n represents the total number of items, and r represents the number of items being chosen at a time. To calculate a combination, you will need to calculate a factorial.

How to find out how many combinations are possible? ›

The formula for combinations, also known as binomial coefficients, is represented as nCr, where n is the total number of objects and r is the number of objects to be chosen. The formula for nCr is: nCr = n! / (r! * (n-r)!)

How many combinations of 2 with 12 items are there? ›

Assuming the problem is asking for the number of combination OF ANSWERS (I would say the question is incomplete) then the answer is 2^12 = 4096. Per each question there are 2 possible outcomes: 2x2x2x..... x2 twelve times. If you use a tree diagram you will easily understand it.

How many combinations of 2 with 4 items are there? ›

Consequently, there are 6 combinations when selecting 4 objects taken two at a time.

How many possible combinations of 4 numbers are there? ›

10 ⋅ 10 ⋅ 10 ⋅ 10 = 10 4 = 10 , 000 .

How do you calculate the number of combinations without repetition? ›

The number of k-element combinations of n objects, without repetition is Cn,k = (n k ) = n! k!( n − k)! . The counting problem is the same as the number of ways of putting k identical balls into n distinct boxes, such that each box receives at most one ball.

How many possible combinations of 3 items are there? ›

if you have 3 items and want the different combinations of every set, but NOT the 0 possibility then you can use 23−1=7; if you want to know the possibilities of the 7 in sets then you can use the similar formula 27−1=127.

What is the formula for combinatorics? ›

The number of combinations of n objects taken r at a time is determined by the following formula: C(n,r)=n! (n−r)!

How many different combinations can be made with 12 digits? ›

That is 12! Combinations. So 479001600 combinations are possible if repetition is not allowed. If repetition of digits is allowed then, 12^12 combinations are possible.

What is the formula for permutations and combinations? ›

What is the formula for permutations and combinations? The formula for permutations is: nPr = n!/(n-r)! The formula for combinations is: nCr = n!/[r! (n-r)!]

How to calculate how many possible combinations are there? ›

The number of combinations of n objects taken r at a time is determined by the following formula: C(n,r)=n! (n−r)! r!

What is the formula for nCr combination? ›

We utilise the nCr formula to compute combinations. This formula is as follows: nCr = n! / r! * (n – r)!, where n is the total number of items and r is the number of things that may be selected at one time.

What is the formula for unique combinations? ›

What is the formula for calculating the number of unique combinations from a list of items? The formula for calculating the number of unique combinations from a list of items is n ! / ( r ! * ( n - r ) ! ) , where n represents the total number of items and r represents the number of items in each combination .

What is the formula of combination permutation? ›

What is the formula for permutations and combinations? The formula for permutations is: nPr = n!/(n-r)! The formula for combinations is: nCr = n!/[r! (n-r)!]

What is the formula for nCr and nPr? ›

The nPr and nCr formula are: Pr = n! / (n – r)! Cr = = n! / r! × (n – r)!

What is the formula for combinations with replacement? ›

Combinations with replacement, also called multichoose, for CR(n,r) = C(n+r-1,r) = (n+r-1)! / r! (n+r-1 - r)! = (n+r-1)! / r! (n - 1)!.

References

Top Articles
Latest Posts
Article information

Author: Mrs. Angelic Larkin

Last Updated:

Views: 6289

Rating: 4.7 / 5 (67 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Mrs. Angelic Larkin

Birthday: 1992-06-28

Address: Apt. 413 8275 Mueller Overpass, South Magnolia, IA 99527-6023

Phone: +6824704719725

Job: District Real-Estate Facilitator

Hobby: Letterboxing, Vacation, Poi, Homebrewing, Mountain biking, Slacklining, Cabaret

Introduction: My name is Mrs. Angelic Larkin, I am a cute, charming, funny, determined, inexpensive, joyous, cheerful person who loves writing and wants to share my knowledge and understanding with you.